

Date: 12-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	Why are spherical top rotors microwave inactive?	
b)	What type of absorption shift is found when aniline is in less polar solvent and/or in acidic solution?	
c)	What is retro Diels-Alder cleavage in mass spectral analysis?	
d)	If two signals differ by 1.5 ppm in a 60 MHz spectrometer, calculate the difference observed (in Hz) in a 100 MHz spectrometer.	
e)	State the law of conservation of momentum applied in Mossbauer spectroscopy.	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	Answer the following	
a)	How are thermochemical and spectroscopic dissociation energies related?	
b)	State the rule of mutual exclusion principle.	
c)	How are <i>o</i> -hydroxybenzaldehyde and <i>p</i> -hydroxybenzaldehyde differentiated using IR spectrometry?	
d)	Why EPR signals are presented as a first derivative absorption spectrum?	
e)	Draw the shape of nucleus having $I > \frac{1}{2}$ and $eQ < 0$.	

SECTION B – K3 (CO2)

	Answer any THREE of the following	(3 x 10 = 30)
3	(a) Using Morse's curve, explain the vibrational transitions in anharmonic oscillator and derive the expressions for $\Delta\epsilon$ of fundamental band, first and second overtones. (5) (b) Calculate the rotational constant of $D^{35}Cl$ using the inter nuclear distance of 127.5 pm. (5)	
4	(a) Justify the following. (6) (i) $C=O_{str}$ frequency of benzamide and methyl benzoate are different. (ii) Glycol in dilute CCl_4 shows two $O-H_{str}$ frequencies. (iii) Anhydrides show two $C=O_{str}$ frequencies around $1850-1750\text{ cm}^{-1}$ with a separation of 65 cm^{-1} . (b) Explain the Stevenson's rule of probable fragmentation in Mass spectral analysis.	
5	(a) A certain transition involves an energy change of $4.005 \times 10^{-22}\text{ J mol}^{-1}$. If there are 1000 molecules in the ground state, what is the approximate equilibrium population of the excited state at temperatures of i) 29 K and ii) 2900 K? (b) Calculate the number of EPR signals expected for the coordination compound $[Co_3(CO)_9Rh]$. Given that I value of Co = $7/2$, Rh = $1/2$; Atomic number of Co is 27. (6 + 4)	
6	Explain SIMS, FAB and MALDI desorption ionization techniques with suitable examples. (10)	
7	Define isomer shift in Mössbauer spectroscopy and explain the contributions of nuclear and chemical terms to determine the position of isomer shift.	

SECTION C – K4 (CO3)

Answer any TWO of the following		(2 x 12.5 = 25)
8	(a) Discuss the factors governing the intensity of rotational spectral lines and derive the expression for the maximum populated rotational level. (9) (b) Calculate the room temperature population of CO in $\nu = 1$ relative to $\nu = 0$. Given that the fundamental wave number is 2169 cm^{-1} . (3.5)	
9	(a) Apply Woodward –Fieser rule and calculate the λ_{\max} value of for the following compounds. (4+4) i) ii)	
	(b) Explain McLafferty rearrangement with suitable examples. (4.5)	
1	(a) Explain the following: (i) Hyperfine splitting (ii) Kramer's degeneracy	(3 + 3)
0	(b) Reaction of $\text{C}_6\text{H}_5\text{CH}=\text{CH}_2$ with HBr gives a mixture of regioisomers A (major) and B (minor). The ^1H NMR spectrum of the mixture shows four signals, amongst others, at δ 5.17, 3.53, 3.15 and 2.00 ppm with relative integration of 2:1:1:6, respectively. Calculate mole ratio of A & B. (6.5)	
1	(a) Discuss the effect of magnetic field on NQR transitions with an example.	(8)
1	(b) Calculate the spacing between successive rotational Raman lines in the spectrum of H_2 molecule if the bond length of H_2 is 0.07417 nm.	(4.5)

SECTION D – K5 (CO4)

Answer any ONE of the following		(1 x 15 = 15)
1	(a) Explain the microwave spectrum of prolate and oblate symmetric top molecules with the help of the selection rules and energy level diagrams.	(8)
2	(b) How will you distinguish high and low spin Fe (II) complexes by Mossbauer spectroscopy?	(7)
1	(a) Predict the fragmentation pattern of ethyl benzene and justify your answer.	(7)
3	(b) Explain the various factors affecting the electronic transitions.	(8)

SECTION E – K6 (CO5)

Answer any ONE of the following		(1 x 20 = 20)
1	(a) Discuss PR contours which explain the difference in the spacing between the rotational lines in P and R branches.	(8)
4	(b) Explain the intensity of Stokes and anti-Stokes lines based on quantum theory. (c) Determine the number of NQR transitions and their frequencies, for $^5\text{B}^{11}$ ($I = 3/2$) assuming the asymmetry parameter, $\eta = 0$.	(5)
1	(a) Explain the following spectral data systematically and deduce the structure of an organic molecule with an empirical formula $\text{C}_8\text{H}_8\text{O}$: UV: λ_{\max} 278 and 319 nm. IR: Significant absorption bands at 3070-3010, 2970-2860, 1685, 1605, 1580 and 1450 cm^{-1} PMR: δ (ppm) 2.1 (3H, s) and 7.5 (5H, m). $^{13}\text{C NMR}$: δ (ppm) 198 and 137 (two singlets), 134, 129 and 128 (three doublets) and 26 (one quartet). DEPT-135: four positive peaks; MS: m/e 120 (M^+), 105, 77, 51 and 43. (b) Explain magnetic anisotropy using acetylene and benzene as examples.	(15)

